AI & LLMs
Integrate AI functionality to Fumadocs.
Docs for LLM
You can make your docs site more AI-friendly with dedicated docs content for large language models.
To begin, make a getLLMText function that converts pages into static MDX content.
In Fumadocs MDX, you can do:
import { source } from '@/lib/source';
import type { InferPageType } from 'fumadocs-core/source';
export async function getLLMText(page: InferPageType<typeof source>) {
const processed = await page.data.getText('processed');
return `# ${page.data.title} (${page.url})
${processed}`;
}It requires includeProcessedMarkdown to be enabled:
import { defineDocs } from 'fumadocs-mdx/config';
export const docs = defineDocs({
docs: {
postprocess: {
includeProcessedMarkdown: true,
},
},
});llms-full.txt
A version of docs for AIs to read.
import { source } from '@/lib/source';
import { getLLMText } from '@/lib/get-llm-text';
// cached forever
export const revalidate = false;
export async function GET() {
const scan = source.getPages().map(getLLMText);
const scanned = await Promise.all(scan);
return new Response(scanned.join('\n\n'));
}*.mdx
Allow AI agents to get the content of a page as Markdown/MDX, by appending .mdx to the end of path.
Make a route handler to return page content, and a middleware to point to it:
import { getLLMText } from '@/lib/get-llm-text';
import { source } from '@/lib/source';
import { notFound } from 'next/navigation';
export const revalidate = false;
export async function GET(
_req: Request,
{ params }: RouteContext<'/llms.mdx/[[...slug]]'>,
) {
const { slug } = await params;
const page = source.getPage(slug);
if (!page) notFound();
return new Response(await getLLMText(page), {
headers: {
'Content-Type': 'text/markdown',
},
});
}
export function generateStaticParams() {
return source.generateParams();
}import type { NextConfig } from 'next';
const config: NextConfig = {
async rewrites() {
return [
{
source: '/docs/:path*.mdx',
destination: '/llms.mdx/:path*',
},
];
},
};Accept
To serve the Markdown content instead for AI agents, you can leverage the Accept header.
import { NextRequest, NextResponse } from 'next/server';
import { isMarkdownPreferred, rewritePath } from 'fumadocs-core/negotiation';
const { rewrite: rewriteLLM } = rewritePath('/docs/*path', '/llms.mdx/*path');
export default function proxy(request: NextRequest) {
if (isMarkdownPreferred(request)) {
const result = rewriteLLM(request.nextUrl.pathname);
if (result) {
return NextResponse.rewrite(new URL(result, request.nextUrl));
}
}
return NextResponse.next();
}Page Actions
Common page actions for AI, require *.mdx to be implemented first.

npx @fumadocs/cli add ai/page-actionsUse it in your docs page like:
<div className="flex flex-row gap-2 items-center border-b pt-2 pb-6">
<LLMCopyButton markdownUrl={`${page.url}.mdx`} />
<ViewOptions
markdownUrl={`${page.url}.mdx`}
githubUrl={`https://github.com/${owner}/${repo}/blob/dev/apps/docs/content/docs/${page.path}`}
/>
</div>Ask AI

You can install the AI search dialog using Fumadocs CLI:
npx @fumadocs/cli add ai/searchThen, add the <AISearchTrigger /> component to your root layout.
AI Model
By default, it's configured for Inkeep AI using Vercel AI SDK.
To setup for Inkeep AI:
-
Add your Inkeep API key to environment variables:
INKEEP_API_KEY="..." -
Add the
AISearchTriggercomponent to root layout (or anywhere you prefer):import { AISearchTrigger } from '@/components/search'; export default function RootLayout({ children, }: { children: React.ReactNode; }) { return ( <html lang="en"> <body> <AISearchTrigger /> {children} </body> </html> ); }
To use your own AI models, update the configurations in useChat and /api/chat route.
Note that Fumadocs doesn't provide the AI model, it's up to you.
Your AI model can use the llms-full.txt file generated above, or more diversified sources of information when combined with 3rd party solutions.
How is this guide?
Last updated on
